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ABSTRACT

This report summarizes part of the research work accomplished during

the second year of a two-year grant. The research, entitled "Application of

Lanczos Vectors to Control Design of Flexible Structures" concerns various

ways to use Lanczos vectors and Krylov vectors to obtain reduced-order math-

ematical models for use in the dynamic response analyses and in control design

studies. This report presents a one-sided, unsymmetric block Lanczos algo-

rithm for model reduction of structural dynamics systems with unsymmetric

damping matrix, and a control design procedure based on the theory of linear

state function observers to design low-order controllers for flexible structures.
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Chapter 1

INTRODUCTION

This report summarizes part of the research work accomplished during

the second year of a two-year grant on the topic of the application of Krylov

vectors and Lanczos vectors to the control of flexible structures. The goal of this

research project is to develop a reduced-order modeling technique for general

linear systems based on the use of Krylov vectors and Lanczos vectors, and to

apply the technique to the modeling of flexible structures. Some advantages

of the Krylov-based and Lanczos-based reduced-models in the control design

application are also cited. Accomplishments made during the first year of this

project include the development of a Krylov model-reduction algorithm for

structural dynamics systems, the formulation of a substructure-based control

design procedure called the Substructural Controller Synthesis (SCS) method,

and the development of a controller-reduction method based on the preservation

of impulse response energy. These methods are summarized in the first year's

interim report, Ref. [6]

This report includes another two topics concerned with model reduc-

tion and controller design of flexible structures. In Chapter 2, a one-sided,

unsymmetric block Lanczos algorithm for structural dynamics systems with

unsymmetric damping matrix is derived. Although there are several existing

unsymmetric Lanczos algorithms [3, 10, 19], the one-sided, unsymmetric block



Lanczos,algorithm proposedin this report hasthe followingadvantages:(1) the

numerical breakdownproblemthat usuallyoccursin the two-sidedunsymmet-

ric Lanczosmethod is not present, (2) the Lanczosvectors that are created

lie in the controllableand observablesubspace,(3) the reduced-ordermodel is

guaranteedto bestable,(4) a shifting schemecanbeusedfor unstablesystems,

and (5) the flexibility of the choiceof starting vector leads to more accurate

reduced-ordermodels.

In Chapter 3 of this report, a control designprocedure basedon the

linear statefunction observeris described.This methodis a semi-inversedesign

procedurein that the control law is not designedbeforethe observersystem,

but is a result that comesfrom the observerdesign. However, the observer

design is not completely independentof the control designeither, but seeks

to yield a feedbacksignal that is closeto a prescribedcontrol law. First, the

observerdesignproblem is consideredasthe reconstructionof a linear function

of the state vector. The linear state function to be reconstructed is the given

control law. Then, based on the theory for linear state function observers,

the observer design is formulated as a parameter optimization problem. The

optimization objective is to generate a matrix that is close to the given feedback

gain matrix. Based on that matrix, the form of the observer and a new control

law can be determined. The semi-inverse design procedure can yield a reduced-

order observer with dimension considerably smaller than that of the system.

Chapter 2 and Chapter 3 of this report are essentially revised versions

of technical papers that are already published or to be published. The readers

may find some symbols used in Chapter 2 are re-used in Chapter 3 but with

completely different meanings. To avoid confusion, the readers are advised to
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consider Chapter 2 and Chapter 3 as two independent topics with their own

notations.



Chapter 2

AN UNSYMMETRIC LANCZOS MODEL

REDUCTION ALGORITHM

The Lanczos algorithm is a three-term iteration scheme originally devel-

oped by Lanczos [12] as a method for evaluating the eigensolution of symmetric

matrices. The set of vectors generated by the Lanczos algorithm forms a ba-

sis for the KryIov subspace. When used as a transformation basis, the set of

Lanczos vectors transforms a matrix to a tridiagonal form, from which the

eigenvalues can be determined easily. Recently, there has been a lot of re-

search concerning the application of Lanczos vectors and Krylov vectors to

the dynamic analysis and control design of structural dynamics systems. For

undamped structural dynamics systems, the Lanczos model reduction method

was first proposed by Nour-Omid and Clough in Refs. [17, 18]. Later, Craig

and Hale applied Krylov vectors to model reduction in the context of cou-

pled substructures [5]. Recently, Su and Craig incorporated the concept of

parameter-matching model reduction with Krylov vectors to develop a Krylov-

model reduction method for dynamic analysis and control of flexible struc-

tures [22, 24]. The Krylov vectors and the Lanczos vectors basically span the

same subspace, because they are generated by the same iteration formula. The

only difference is that the Lanczos algorithm employs a special three-term or-

thogonalization scheme. A damped Krylov model-reduction algorithm is also

presented in Ref. [22] for the model reduction of damped structural dynamics
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systems described by a second-order matrix differential equation. This was the

first Krylov vector method to include the damping matrix in the algorithm.

However, there is a restriction on the method in Ref. [22]: the damping matrix

has to be symmetric.

Although most passive damping mechanisms yield a symmetric damping

matrix, there are cases when the damping matrix is unsymmetric. For struc-

tures, unsymmetric damping may arise from a combination of active feedback

control design and Coriolis forces. To deal with general, nonsymmetric damp-

ing, the usual approach is to write the system's dynamic equation in the first-

order state-space form. Then, an unsymmetric Lanczos algorithm is used to

create a basis for model reduction. In Refs [10] and [11], Kim and Craig present

an unsymmetric block Lanczos algorithm that generates a set of left Lanczos

vectors and a set of right Lanczos vectors. These two set of Lanczos vectors

form a basis that transforms the system equation to an unsymmetric tridiagonal

form. Reference [19] also has a similar two-sided unsymmetric Lanczos iter-

ation scheme for general, non-classically damped systems. For systems with

symmetric damping matrix and symmetric stiffness matrix, Ref. [19] further

shows that the two-sided unsymmetric Lanczos algorithm can be simplified into

a one-sided algorithm by taking advantage of symmetry. The major disadvan-

tage of a two-sided Lanczos algorithm is that the reduced-order model obtained

may exhibit some high frequency modes or even unstable modes, although the

full-order system is stable. Other applications of Lanczos vectors and Krylov

vectors include the skew-symmetrlc Lanczos algorithm of Gupta and Lawson

for spinning structures [8] and the Krylov-vector controller-reduction method

of Su and Craig [25].



In this chapter, another unsymmetric Lanczos algorithm for structural

dynamics systems with unsymmetric damping matrix and/or unsymmetric

stiffness matrix is proposed. The advantages of the present method over the

other unsymmetric Lanczos algorithms are: (1) the numerical breakdown prob-

lem that usually occurs in applying the two-sided unsymmetric Lanczos method

is not present, (2) the Lanczos vectors that are produced lie in the control-

lable and observable subspace, (3) the reduced-order model is guaranteed to

be stable, (4) a shifting scheme can be used for unstable systems, and (5) the

flexibility of the choice of starting vector leads to more accurate reduced-order

models.

Detailed development of the algorithm is presented in Section 2.1. Mod-

ification of the algorithm for the application to different cases is discussed in

Section 2.2. Finally, Section 2.3 presents numerical examples to illustrate the

efficiency of the proposed algorithm. Part of the material in this chapter has

been submitted as a conference paper (Ref. [23]).

2.1 Development of an Unsymmetric Block Lanczos It-

eration Scheme

2.1.1 Transformation of the System Equation

Consider a linear, time-invariant system described by

_ = Az + Bu x E R", u E R l

y=Cx yE R _
(2.1)



Assume that the system is stable and completely controllable. Then, the fol-

lowing Lyapunov equation has a unique positive definite solution.

AWe + WcA T + BB T = 0 (2.2)

We is called the controllability grammian of the system. If the system's state

vector is transformed to another set of coordinates through a projection ma-

trix L

x = L_ (2.3)

then the system equation becomes

x = .4_ + [3u

y= C':_

where the system matrices in the new coordinates are

(2.4)

fi,= L-1AL , [3= L-1B , C=CL (2.5)

The controllability grammian of the system in the new coordinates satisfies

+ Wo i r +  [3T = 0

or

L-1ALWc + 'Wc(L-_AL) T + L-_BBTL-T = o (2.6)

From Eq. (2.2) and Eq. (2.6), we obtain the following relationship

W_ = L-1W_L -T or W'_ a = LTwf-aL (2.7)

which indicates that the controllability grammian is not invarlant under coor-

dinate transformation.
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Now, assumethe transformation is such that the controllability gram-

mian in the new coordinatesis an identity matrix. Then,

Wc = I _ LTWzIL = I _ L -1 = LTwz 1

In this case, the transformed system matrices can be expressed by

ffI= LTW_IAL , B = LTW_-IB , C =CL

(2.8)

(2.9)

If it is further assumed that the projection matrix L is such that the/_ matrix

has the special form

0

0
(2.10)

then the Lyapunov equation for the controllability grammian, Eq. (2.6), be-

comes

A+TIT +

o ... o
0 0 0

: ". :

0 0 ... 0

=o (2.11)

which indicates that the new system matrix ti is almost skew-symmetric, except

for the first diagonal block, which is symmetric. (A skew-symmetric matrix N

satisfies N+N T = 0.) In summary, for any stable linear, time-invariant system,

if the projection matrix L is such that in the new coordinates the controllabil-

ity grammian is an identity matrix and the transformed input matrix /_ has

nonzero entries only in the first block, then the transformed system matrix 2, is

almost skew-symmetric matrix. The purpose of showing this transformation is

to prepare for the development of a one-sided, unsymmetric Lanczos algorithm

in the next section. The derivation is basically inspired by the form of the

Lyapunov equation in Eq. (2.11) and the Lanczos iteration scheme of Pet'. [10].
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2.1.2 The Lanczos Iteration Algorithm

In this section, a one-sided, three-term, block-Lanczos iteration scheme

will be developed. This iteration scheme, together with a special choice of

starting block of vectors, can be used to create a set of Lanczos vectors. The

projection matrix formed by the set of Lanczos vectors transforms the system

matrix A into an almost skew-symmetric, block-tridiagonal form.

First, assume that there exists a set of blocks of vectors Q_, i = 1, 2, ..., k,

that satisfy

A[Q1 Q2 "" Qk] = [Q1 Q_ "" Qk]

_'1 _1

"_1 _'2 _2

7-t2 .r3
(2.12)

The above equation implies the following iteration formula

AQi = Qi-l_/-1 + Qi,T'i + Qi+,Hi (2.13)

Let us further assume that the Qi's are orthogonalized with respect to the

inverse of the controllability grammian. That is

I if i= jQTW_"QJ = 0 if i _ j
(2.14)

Then, by premultiplying Eq. (2.13.) by "_i-1¢3TW-,c , QTWz _, and QT+_W_-_ re-

spectively, and using the orthogonality condition in Eq. (2.14), it can be shown

that

G,-, = QT,W['AQ,

_'i OTW-' AO. (2.15)



10

Let the starting block of vectors of the iteration formula in Eq. (2.13) be the

B matrix after being normalized with respect to Wj 1. That is, let

Q1 = BUE-½ and U_U T = BTW71B (2.16)

where U_aV T is the singular-value decomposition of BTW[qB with uTu -- I

and E being the diagonal matrix containing the singular values. With this

special choice of starting block of vectors, two identities can be derived. The

first identity is,

_i .__ _t./T __ T -1Qi Wd AQ,+I + (QTi+IW-1AO_Tc"_,,

= QT(w_-IA + ATw_I)Q_+I

Combining Eqs. (2.2) and (2.16) with the above equation gives

Gi + "HT = -QT(W_-IBBTW_-I)Q,+I

= _QT [W[-I(QIF_½U-_)(Q1E½U-1)Tw_-_ ] Q,+_ =0

or,

The second identity is

7-/, = _GT (2.17)

+.T [ = oTW-_AC).•_, _ ,_, + QTATw[-1 Qi

= -QT(W_-IBBTW[_)Qi

= _QT [W_-_(QIE½U-,)(QIE½U-1)Tw_-,] Qi

or,
ifi=l

(2.18)
ifi_l
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The two identities in Eqs. (2.17)and (2.18) indicate that the block tridiagonal

matrix in Eq. (2.12) is almost skew-symmetric,except the diagonal elements

of _'1- Therefore,if we define

L_= ... ]

and

T=

_'1 gl
_gr 7_ _2

_GT _'32 (2.20)

then, Eq. (2.12) can be written as

AL = LT (2.21)

Applying the orthogonality condition in Eq. (2.14) to the above equation gives

fii -- LTw_ "1AL T (2.22)

In summary, the unsymmetric Lanczos algorithm proposed in this chap-

ter is described by the following three-term iteration formula

AQi = Qi-l_i-1 + Qi_ - Qi+l_ T (2.23)

The starting blocks of vectors are Q0 = 0 and Q1 = BUE-_. At the i-th

iteration, the new block of vectors Qi+l is to be determined by this iteration

formula, with Qj, j = 1, 2, ..., i, being already obtained in the previous

iterations. Let

Ri = -Qi+I_ r
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or, from Eq. (2.23),

Ri - AQi - Qi-1Gi-, - Qi_ (2.24)

in which ._i and G_-I are determined by using the formulas in Eqs. (2.15a)

and (2.15b). Then, the new block of vectors Qi+l can be obtained by simply

normalizing Ri with respect to W, -1. So, let the singular-value decomposition

of RTw_"R_ be

W;-'n, = vr v = Vo oV[ (2.25)

where U_ and E_ are the non-singular portions. Then, the new block of vectors

can be calculated by
1

Qi+l = P_U,E_ r (2.26)

The vectors generated by Eq. (2.24) have an interesting property. That

is

 von[0 . aOl.
The set of vectors on the right-hand side of the above equation is called a set

of Krylov vectors, which can be generated by the simple iteration formula

Qi+l = AQi with Q, given

The difference between the Krylov vectors and the Lanczos vectors is that

the latter are orthogonalized. Therefore, the Lanczos vectors and the Krylov

vectors span the same subspace. Since the B matrix is used as the starting

block of vectors (Q1 = BUE-_), the Lanczos vectors created lie in the span

of [ B, AB, ... Ak-IB ], which is the controllability matrix of the system.

Thus, the projection matrix L defined in Eq. (2.19) has a column subspace that

is the same as that of the system's controllability matrix.
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2.1.3 Model Reduction

The set of Lanczos vectors generated by the Lanczos iteration formula

can be used as a basis for model reduction. Let the L matrix be partitioned

into

where LR E /_,_x_corresponds to the retained portion and Lr E R _x("-_) cor-

responds to the truncated portion. Then, the state vector can be decomposed

into

x = LRxn + Lrxr (2.27)

The reduced system equation is described by

kR = TnzR + BRu

y = Cnxn

TR T -1=LaW _ ALR , BR= LTW[IB ,

where

(2.28)

CR=CLR (2.29)

Since the matrices of the reduced system satisfy

TR+T$ = 0

the controllability grammian of the reduced system is an identity matrix. Also,

as will be explained later, the reduced system in Eq. (2.28) is a completely

controllable system. According to the Lyapunov theorem [2], if a controllable

system has a positive definite controllability grammian, then the system is

stable. Therefore, the reduced system obtained by the Lanczos model reduction

method is a stable system.
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Table 2.1: The one-sided,unsymmetricblock-Lanczosalgorithm.

Given A, B, and C.

(1) Solve AWe + WcA T + BB r = 0 for

(2) Starting vectors:

(a) Qo = 0
(b) Ro= B

(c) R_oW:l Ro = V_V T = V_.V[
1

(d) Q1= RoV._; _ (normalization)
(3) For i = 1, 2, ... repeat:

WC°

(singular-value decomposition)

(e) R, = AQi - Qi-lGi-1 - Qi._'_ (orthogonalization)

_i-1 ('}T W-1AC_ .T'i = oTW-1A O

(f) RT_W[IR, = UEU T = U,_Z,U T (singular-value decomposition)
1

(g) Q,+I = RiU_E-_ _ (normalization)

end

(4) Form the k-block transformation matriz L = [Qa Q2 ... ].

2.2 Modification and Application of the Proposed Lanc-

zos Algorithm

The Lanczos iteration scheme developed in the previous section is sum-

marized by the algorithm shown in Table 2.1. This algorithm assumes that

the system considered is stable and completely controllable. For application to

systems that are not stable and/or not completely controllable, slight modifi-

cations of the algorithm must be made. Also, for model-reduction applications,

it can be shown that a different choice of starting vectors yields reduced-order
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modelswith different properties. Also, there is an alternative approach,which

usesthe observabilitygrammianasthe normalizationweightingmatrix. Details

about modificationsof the algorithm for different applicationsarediscussedin

this section.

2.2.1 A Shifting Method for Unstable Systems

In Step (1) of the algorithm, the controllability grammian, which is to

be used as the normalization weighting matrix, must be obtained by solving

the Lyapunov equation. However, the Lyapunov equation has a unique semi

positive-definite solution if and only if the system matrix A is stable. For

unstable systems, one can use a simple shifting approach to ensure a unique

solution of the Lyapunov equation, and then apply the Lanczos algorithm to

the shifted system.

First, let

A_, = A - aI (2.30)

where a is chosen such that all of the eigenvalues of A_ lie in the left half of

the complex plane. Then, since A_ is stable, the controllability grammian for

the shifted system can be obtained from

A,,W_c + W_cA T + BB T = 0 (2.31)

After the controllability grammian W_c is calculated, the proposed Lanczos

iteration scheme can be used to generate a set of Lanczos vectors for the shifted

system. The only change in the algorithm is to use A_ as the iteration matrix

and to use W_-_ as the normalization weighting matrix. The L matrix formed



by the generated Lanczos vectors satisfies

LTw__ L = I , LTw_clA_L = T

16

(2.32)

By using the above identities, the original system matrix can be transformed

to

- LTWj_AL = LTw_cl(A_ + al)L = T + o'I (2.33)

which is in block-tridiagonal form.

The subspace spanned by the shifted Lanczos vectors is

spa,[ B, (A- IIB, ..

which is the same as the span of the controllability matrix of the unshiffed

system, that is, the span of [ B, AB, ... Ak-IB ]. Therefore, the control-

lability property of the Lanczos subspace is not altered by the shifting.

2.2.2 The Pseudo-Inverse of the Controllability Grammian

In the proposed Lanczos algorithm, the inverse of the controllability

grammian, W: _, is required for orthonormalization (Steps (c) and (f), singular-

value decomposition). For systems that are not completely controllable, the

controllability grammian is semi positive-definite, which means that it is singu-

lar and that its inverse does not exist. In this case, a pseudo-inverse approach

must be used instead.

Since Wc is symmetric, its singular-value decomposition takes the form
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In the above decomposition, the column vectors of ¢c form the controllable

subspace and the column vectors of Ce form the uncontrollable subspace. The

pseudo-inverse of Wc can be defined as

W + = ¢cA7'¢ T (2.35)

which corresponds to the controllable (or nonsingular) portion of the system.

Then, W + instead of W/1 can be used in Steps (c) and (f) to perform normal-

ization.

By orthonormalizing P_ with respect to the inverse (or pseudo-inverse)

of the controllability grammian, the uncontrollable part is removed from the

Lanczos vectors. This can be explained by using the fact that RTw+p_ =

T -1 T
R i ¢_A_ ¢_ R is singular if and only if some column vectors of Ri are linearly-

dependent and/or are orthogonal to q)¢. Therefore, to retain only the non-

singular portion of RTw+R.i at the normalization step, Steps (f) and (g), is

the same as to retain only the linearly-independent and controllable portion of

R/. As a result, the Lanczos vectors generated by the proposed algorithm are

assured to lie in the span of the controllable subspace.

2.2.3 Starting Vectors

If the objective is simply to transform a matrix into an almost skew-

symmetric, block-tridiagonal form like the T matrix in Eq. (2.20), then the

choice of the starting block of vectors is completely arbitrary. One can choose

an arbitrary starting block of vectors Q1, solve for X from the Lyapunov equa-

tion AX + XA T A- QxQ T = 0 and, then use itsnverse (or pseudo-inverse if X is
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singular) as the normalization weightingmatrix in the Lanczositeration pro-

cess. The projection matrix L formed by the generated Lanczos vectors will

transform the matrix A into an almost skew-symmetric form. However, for

model reduction purposes, the choice of starting vectors is not a trivial issue.

As mentioned previously, by choosing B as the starting block of vectors,

the span of the L matrix formed by the Lanczos vectors is the same as the

span of [ B, AB, ... Ak-IB ]. As a result, the reduced system matrices in

Eq. (2.9) satisfy

C/iiB = (CL)(LTW_-IAL)_(LTW_IB) = CAiB (2.36)

for i = 0, 1, ..., k - 1. The recursive proof procedure employed in Ref. [25]

can be used to prove the property in Eq. (2.36). The parameters CAiB,

i = 0, 1, ..., are called the Mavkov parameters of the system. Therefore,

by using Lanczos vectors as the basis for model reduction, the reduced system

preserves a certain number of Markov parameters of the full-order system. By

matching Markov parameters, the reduced system tends to approximate the

high frequency range of the original system.

Besides the Markov parameters, another set of system parameters that

are important is CA-_B, i = 1, 2, ..., which are called the low-frequency

moments [25]. For some applications, it might be important to preserve some

of the system's low-frequency moments as well as some Markov parameters. It

can be shown that if the projection matrix L is such that

span{L} = span [ A-JB, ... A-1B, B, AB, ... AJ'B ] (2.37)

with j, k > 0, then the reduced system matches the system parameters CAiB,

for i =-j, ..., 0, ..., k.
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Obviously, if A-JB is chosen as the starting block of vectors for the

iteration formula in Eq. (2.23), then the set of Lanczos vectors generated lie in

the same span as the matrix in Eq. (2.37). Therefore, one can simply assume

that the system considered is

where

= Ax + JBu
(2.38)

y= Cx

AJ[_ = B

or

_= A-JB

and, then use A-JB as the starting block of vectors, and use the inverse (or

pseudo-inverse) of the solution of

AWe + WcA T + A-JB(A-JB) T = 0

as the normalization weighting matrix for the proposed Lanczos iteration al-

gorithm. The set of Lanczos vectors thus generated will form a projection

matrix L such that Eq. (2.37) is satisfied and the transformed system matrix

has an almost skew-symmetric, block trldiagonal form. The J_ matrix, how-

ever, no longer has the form in Eq. (2.10), but contains nonzero elements up

to (j + 1)-th block. That is

IBm,... By÷,,o, ...o



2O

2.2.4 The Use of A -1 as the Iteration Matrix

If A -1 instead of A is used as the iteration matrix in Eq. (2.23), which

becomes

A-1Qi = Q,-1_,-1 + Q_.T, - Q,+I_ T (2.39)

then the set of Lanczos vectors generated will lie in the span of the generalized

controllability matrix [ A-1B, A-2B, ... A-kB ]. Then the resulting re-

duced system matches a certain number of low-frequency moments, and thus,

approximates the low frequency range of the full-order system. For structural

dynamics systems, the low frequency range usually is the dominant frequency

range and, therefore, should be well-approximated by the reduced-order model.

In this case, the iteration formula in Eq. (2.39) is recommended.

The system in Eq. (2.1) can be rewritten as

A-lk = x + A-1Bu

y = Cx (2.40)

Its controllability grammian is the solution of

A-1Wc + WcA -T + A-1BBTA -T -- 0 (2.41)

which is the same as Eq. (2.2). By using A -1 as the iteration matrix and A-1B

as the starting block of vectors, the proposed Lanczos algorithm will generate

a set of Lanczos vectors that transforms the system equation in Eq. (2.40) into

the form

T_ = _ +/_u

Y =_,_ (2.42)
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whereT is the block tridiagonal matrix defined in Eq. (2.20). The reduced sys-

tem in Eq. (2.42) matches the low-frequency moments of the full-order system.

If preservation of some Markov parameters are required, AkB instead of A-1B

should be used as the starting block of vectors.

2.2.5 An Observability Grammian Approach

Although the formulation so far has been based on the controllability

grammian, there is a dual approach that is based on the observability gram-

mian. The observability grammian is the solution of

ATWo + WoA + cTc -- 0 (2.43)

If A is replaced by A T, B is replaced C T, and Wc is replaced by Wo in the

algorithm in Table 2.1.3, then the Lanczos vectors generated lie in the span of

which is the observability matriz of the system. Hence, the Lanczos vectors

generated by the observability grammian approach are in the observable sub-

space.

The set of Lanczos vectors generated by the observability grammian ap-

proach forms an L matrix that satisfies

LTWolL - I , LTWolATL = T

Therefore, we can let

x = WolL_
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and transform the system equation, Eq. (2.1), to the form

_. = TT_ q- LT Bu

Y = CW: 1L£ (2.44)

where the transformed output distribution matrix CW_-IL has nonzero ele-

ments only in the first block.

In application to model reduction, the controllability grammian approach

can be used to delete the uncontrollable and nearly uncontrollable part of the

system. Subsequently, the observability grammian approach can be used to

delete the unobservable and nearly unobservable part of the system.

2.3 Numerical Examples

2.3.1 General Linear System Example

The first example is taken from Ref. [3]. This example is used to illustrate

the fact that the proposed algorithm can generate a set of Lanczos vectors that

are in the span of the controllable and observable subspace. The system is a

five-state, unstable, non-minimal system whose system matrices are

A

-3 -2 -2 -2 -2

-3 -8 -11 -II -11

6 12 17 16 16

-3 -6 -9 -9 -11

I 2 3 4 6

{_7.5}{_6.0}-6.0 -12.0

B = 10.5 C T = -16.0

-3.0 -17.0

0.0 -18.0

The eigenvalues of the A matrix are: -2, -1, 1, 2, 3. Only two states are

both controllable and observable.

Because the system is not stable, we first define a shifted system with

system matrix A, = A - 51. Then, the controllability grammian approach is
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applied to the shifted system(Ao, B, C) with B chosen as the starting vector.

The Lanczos algorithm stops at the third iteration. Three Lanczos vectors are

generated, and they form a matrix Lc E R 5×3, which spans the controllable

subspace. Using Lc as the model reduction basis, the following reduced system

matrices are obtained

F
Ac T + [

= Lc W_ AL_ =

L

Bc T + { 5.4772 }
=L¢Wg B= 0

0

-10.0000 -7.8994 0 ]

]7.8994 5.0000 -2.3664

0 2.3664 5.0000

Cc = CL_ = [ 0 -0.8321 -2.4612 ]

which represent a completely controllable system. However, this reduced sys-

tem is not a minimal system yet, because it is not completely observable. The

eigenvalues of the reduced system are: -2, -1, 3.

Next, we can apply the observability grammian approach to the three-

state reduced system obtained above to delete the unobservable state(s). Again,

because the reduced system is not stable, we define a shifted system matrix

A, = A¢ - 5I and apply the Lanczos algorithm to the shifted system. The

Lanczos algorithm stops at the second iteration and creates two Lanczos vec-

tors. These two Lanczos vectors form a matrix Lco, which spans the controllable

and observable subspace. The reduced system matrices based on L_o are

._ T + [-3.00003.4641]= L_oA_W[, Lco= -3.4641 5.0000

[_ = LT°B_ = ( 0 }-2.5981C = C_W+L_° = [ 4"000 0 ]

This is a minimal-order representation of the original five-state system.



24

Although the modified two-sided nonsymmetric Lanczos algorithm in

Ref. [3] also produces a minimal-order model for the same system, the reduced

system matrix does not have an almost skew-symmetric, block-tridiagonal form

like the one we obtained here. Besides that, the algorithm in Ref. [3] is a single-

vector algorithm and, therefore, can be used only for single-input/single-output

systems, while the one-sided, unsymmetric Lanczos algorithm proposed here is

derived for general multi-input/multi-output systems.

2.3.2 A Flexible Structure Example

The second example is a plane truss structure as shown in Fig. 2.1. This

force (inpuO
240m

output t 4

__"_'--"_ - _ 40m

EA=2E+4 N PA=2E-2 kg/m

Figure 2.1: A plane truss structure.

plane truss structure has sixteen degrees of freedom, and hence, thirty-two

states. There is one force actuator and one displacement sensor on the struc-

ture. Because of the dashpot dampers, the damping matrix is non-proportional.

The eigenvalues of the system are listed in Table 2.2, which shows that, except

for the first mode, which is overdamped, all the modes are underdamped with
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damping ratios that range from 0.3% to 9%.

Four reduced-order models are examined: a twelve-state reduced-model

based on the twelve complex eigenvectors corresponding to the six lowest fre-

quency modes, and three twelve-state Lanczos reduced-models based on differ-

ent starting vectors. The Lanczos vectors are generated by using A -1 as the

iteration matrix. Therefore, the Lanczos-reduced models tend to approximate

the low-frequency range of the system. The three starting vectors considered

are: A-1B, B, and AB.

Figures 2.2 through 2.5 compare the frequency response functions of the

reduced-models with that of the full-order model. In the low-frequency range,

the Lanczos-reduced models approximate the system equally well as the eigen-

vector reduced-model. However, in the high-frequency range, the system is

much better approximated by the three Lanczos-reduced models than by the

eigenvector-reduced model. It is also seen that the Lanczos-reduced model ob-

tained by using AB as the starting vector matches the two Markov parameters

CB and CAB, which represent the high frequency behavior of the system, and

therefore, it provides the best approximation of system in the high-frequency

range. Similar results can be observed from the comparison of impulse response

histories in Figs. 2.6 through 2.9.
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Table2.2: Eigenvaluesof the plane truss structure.

Eigenvalues ( x 10 2) Damping Ratio

-0.0324

-0.0029

-0.0171

-0.0301

-0.0146

-0.0300

-0.0087

-0.0223

-0.0773

-0.0031

-0.0118

-0.0107

-0.0332

-0.1247

-0.0216

-0.0499

0.0233i

± 0.1852i

± 0.1866i

± 0.4134i

± 0.5804i

± 0.6262i

± 0.7836i

± 0.9018i

± 1.0054i

± 1.0087i

1.0378i

± 1.3905i

± 1.7021i

± 1.7517i

± 2.0071i

2.3059i

1.3912

0.0155

0.0916

0.0729

0.0251

0.0479

0.0112

0.0247

0.0769

0.0031

0.0114

0.0077

0.0195

0.0712

0.0108

0.0216
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Figure 2.2: Comparison of FRF: full-order model vs twelve-state eigenvector-
reduced model.
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Figure 2.3: Comparison of FRF: full-order model vs twelve-state Lanczos-

reduced model with starting vectors A-XB.
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Figure 2.4: Comparison of FRF: full-order model vs twelve-state Lanczos-

reduced model with starting vectors B.
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Figure 2.5: Comparison of FRF: full-order model vs twelve-state Lanczos-

reduced model with starting vectors AB.
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Figure 2.6: Comparison of impulse responses: full-order model vs twelve-state

eigenvector-reduced model.
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Figure 2.7: Comparison of impulse responses: full-order model vs twelve-state

Lanczos-reduced model with starting vectors A-lB.
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Figure 2.8: Comparison of impulse responses: full-order model vs twelve-state

Lanczos-reduced model with starting vectors B.
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Figure 2.9: Comparison of impulse responses: full-order model vs twelve-state

Lanczos-reduced model with starting vectors AB.



Chapter 3

CONTROL DESIGN BASED ON LINEAR STATE

FUNCTION OBSERVER

This chapter is concerned with the design of low-order observer-based

controllers for large scale systems. Basically, there are three approaches to

the design of low-order controllers for large scale systems: model reduction,

controller reduction, and parameter optimization. In the model-reduction ap-

proach, the size of the system is reduced first, then the design of the controller

is based on the reduced model. In the controller-reduction approach, a full-

order controller is designed first, then the controller is reduced to a desirable

size. In the direct parameter optimization approach, an optimization problem

is solved to determine the controller system parameters such that a prescribed

performance function is minimized. The first two approaches cause spillover of

control energy in the closed-loop system and may take a number of trial and

error iterations to reach an acceptable design. The third approach, although

theoretically optimal, is numerically intractable for large scale systems.

In this chapter, a new approach to the design of low-order controllers

for large scale systems is proposed. The method is derived from the theory

of linear state function observers. First, the realization of a state feedback

control law is interpreted as the observation of a linear function of the state

vector. Observation of linear state functions is an interesting, and yet not

completely resolved, topic in observer theory. Luenberger[14] first explored the

31
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possibility of using a low-order observer to reconstruct a single linear state

function for single-output systems. For multi-output cases, the first significant

contribution was due to Fortmann and Williamson[7]. A complete review and

investigation of the reconstruction of linear state functions can be found in the

book by O'Reilly[20]. It is shown that there are three conditions that must be

satisfied by the observer system matrices. In general, it is not easy, usually not

possible, to find an exact observer that satisfies these conditions. Therefore,

the method proposed here seeks to design an approximate observer that will

produce feedback signals close to those due to the given control law, rather

than to design an observer that can realize the given control law exactly.

The observer system is characterized by the damping factors and frequen-

cies of the poles and the elements of the filter gain matrix. These parameters

are determined by solving an optimization problem, which yields a matrix that

is close to the given control feedback gain matrix. Then, that matrix is used

to determine a new control law.

The organization of this chapter is as follows. In Section 3.1, the theory

of linear state function observers is reviewed. The conditions that a linear state

function observer must satisfy are derived and summarized. In Section 3.2, the

formulation of the optimization problem for a control design procedure based

on linear state function observers is presented. Section 3.3 uses a four-disk sys-

tem and a lightly-damped beam as examples to demonstrate the applicability

and efficacy of the proposed method. Part of the material in this chapter is

presented in Refs. [26] and [27].
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3.1 Review of Linear State Function Observers

Consider a linear, time-invariant system of the form

= Ax + Bu, x E R", u E R z

y = Cx, y E R" (3.1)

and, without loss of generality, assume that (A,B) is completely controllable,

(A,C) is completely observable, and that B and C are of full rank. A linear

state feedback control law for the above system has the form

u = Kx (3.2)

where the l x n feedback gain matrix K is designed to achieve some speci-

fied performance objective by using an existing control design approach, for

instance, linear quadratic control theory or the eigenvalues/eigenvectors as-

signment method. Due to the limited output measurement, y = Cx, the full

state feedback control law in Eq. (3.2) in general cannot be realized (except

for the special case with K = RC for some R, which is the case of direct out-

put feedback). In order to implement the state feedback control, an observer

is required to reconstruct the complete state vector. It is well known that

for an n-th order system with m outputs, it is always possible to construct a

reduced-order observer of order n - m, with poles arbitrarily placed (subject to

complex pairing), to yield an asymptotic estimate of the states. But, for large

scale dynamic systems with very few outputs, an observer of order n - m is

usually too large for implementation purposes. Hence, it is desirable to design

an observer with considerably reduced order r, r < (n - m).

In actual implementation, the control law in Eq. (3.2) does not neces-

sarily require estimation of the complete state vector x. The only required
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feedback signal is Kx, which can be considered as a linear function of the

state vector. If there exists a low-order observer that estimates Kx, then it

can provide the same feedback signal as the full-order state feedback. Since

Kx E R I×1, where l << n, it is reasonable to expect that the reconstruction

of the linear state function Kx can be accomplished by an observer of order

smaller than n - m.

In general, it is rarely possible to find a reduced-order observer of dimen-

sion l that can reconstruct Kx exactly. So, instead, assume that the feedback

gain matrix K can be decomposed into the form

K = GT, G E R _×r, T E R _×n (3.3)

where l < r < n - m. Then, the feedback control law in Eq. (3.2) becomes

u = GTx (3.4)

which can be implemented by using the measurement of the linear state function

Tx with G as the gain matrix. Now, consider a r-th order observer of the form

il = Eq + TBu + Fy, q E R" (3.5)

The observer state vector q is to approximate Tx in the following asymptotic

sense

[q(t)- Tx(t)] = 0 (3.6)

It is apparent that the observer system matrices E and F cannot be arbitrary

and that they must satisfy some condition(s). Define the error vector

¢=q-Tx (3.7)
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Then, from Eqs. (3.1) and (3.5),

= Eq + FCx - TAx

If E and F are chosen to satisfy the Lyapunov equation

ET- TA + FC = 0

then Eq. (3.8) becomes

(3.8)

(3.9)

_=Ee (3.10)

The error dynamics is governed by the stability of the E matrix.

In summary, in order to realize the control law in Eq. (3.2) exactly, the

observer described by Eq. (3.5) must satisfy the following three conditions:

(i) E is a stable matrix,

(ii) ET - TA + FC = 0, and

(iii) g = aT

Also, for Eq. (3.9) to possess a unique solution for T, the E and A matrices

cannot have common eigenvalues[15].

Now, suppose that the observer in Eq. (3.5) satisfies the estimation re-

quirement. Then, the control signal can be set to be u = Gq, which leads to

the following closed-loop system equation

Jc BG x

Or, by using the definition of the error vector e, the above equation can be
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transformedinto the following block triangular form

{ _}i = [ A+BGTo BG ]{ x }Ee (3.12)

This expression indicates that the observer dynamics and controller dynamics

are decoupled. The closed-loop poles are the eigenvalues of A + BGT and E.

Therefore, controller design and observer design can be separated in the same

manner as in the design of a full-order observer.

Sufficient and necessary conditions for the existence of the E, F, and

T matrices, and an efficient numerical scheme for the their solution are still

not available. In fact, by examining the number of equations (r × n) and the

number of unknowns ((r x m) + (r × r), assuming T given) in Eq. (3.9), it is

concluded that for the cases with r and m much smaller than n, in general the

problem is overdetermined and a solution does not exist. Therefore, it will not

be attempted here to establish a solution scheme for finding an exact reduced-

order observer for linear state functions. In the following section, the three

conditions for a valid linear state function observer will be used to develop a

practical procedure to design low-order observers.

3.2 A Semi-Inverse Observer-Based Control Design
Procedure

In the full-order LQR design, the feedback control law is derived from

optimal control theory, and the observer is designed by pole placement with

the observer poles placed such that the observer dynamics is faster than the

dynamics of the rest of the closed-loop system. It is just natural to design the
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optimal control law first and the observer afterwards. However, the perfor-

mance of an optimal regulator is usually degraded when the feedback signal is

based on the estimated states instead of the exact states. Newmann[16] showed

that there is no way of defining an observer system so that the performance cost

will be minimized. Therefore, control design and observer design basically can

be considered as two independent processes. A completely inverse procedure

whereby the observer is designed first, followed by the determination of the

control gain matrix is also adequate, as long as the closed-loop system meets

some prescribed performance criteria.

From the above argument, a possible inverse design procedure for a linear

state feedback control law and its associated linear state function observer may

be described by the following steps:

(1) Assign matrices E and F for the observer equation, Eq. (3.5).

(2) Solve the Lyapunov equation, Eq. (3.9), for the T matrix.

(3) Determine a control law u = GTx with G such that A + BGT is a stable

matrix.

It is obvious that if a control law is successfully determined by the above

procedure, then the closed-loop poles are the eigenvalues of E and A + BGT.

The above inverse design procedure, although it may be feasible, is not really

practical. First of all, the choice of E and F matrices is arbitrary and there is no

criterion on which to base their selection (except that E must be a stable matrix

and must not have any eigenvalue in common with A). Secondly, determination

of the G matrix can be very difficult. In fact, it is the same problem as the
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determination of an output feedback gain for a system with output vector

y = Tx. A general condition of pole assignability given by Srinathkumar[21]

indicates that if (A, B) is completely controllable and (A, T) is completely

observable, then max(/,r) eigenvalues of A + BGT can be arbitrarily specified

(subject to complex paring) to within any degree of accuracy. However, the

locations of the rest of the eigenvalues are not predictable, and it is never an

easy task to determine a G matrix such that all the poles of A+BGT are stable,

especially for the case of r much smaller than n. Therefore, a completely inverse

design procedure is not practical.

If a feedback gain matrix K is already designed and given, it is reasonable

to choose the E and F matrices in such a way that the T matrix obtained from

the Lyapunov equation, Eq. (3.9), is "close" to K. The closeness of two matrices

can be defined by the following two-norm measure

H g - GT ]]2

7 = ][ K ][2 (3.13)

If T is close to K, which means that the subspace spanned by the row vectors

in T is close to the subspace spanned by the row vectors in K, then there exists

a G matrix such that 7 is small. The G matrix that minimizes 7 is

G = KT + (3.14)

where T + is the Moore-Penrose pseudo-inverse of T. If T is close enough to K,

the closed-loop matrix A + BGT will be stable, providing that A + BK is a

stable matrix.

To determine E and F matrices so that they yield a T matrix as close

to K as possible, a parameter optimization technique can be used. All the
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elements of E and F are considered as optimization parameters of the following

optimization problem:

Minimize "t(E,F)= ]] K- KT+T I]_
IIK I1=

Subject to

ET- TA + FC = 0

E is a stable matrix

This optimization approach, however, has disadvantages in that it involves a

large number of parameters, and the order of the observer needs to be specified

first before the optimization can be carried out. Therefore, instead of solving

the global optimization problem, a block-by-block optimization procedure will

be pursued.

Although E E R r×r and F E R r×_, only r x (m + 1) parameters are

needed to characterize the observer system. The form of the E matrix can be

chosen to be block-diagonal

in which

E=diag(h,) (3.15)

Ai=[ -alw_ -wi]_ai (3.16)

is the i-th block associated with the pair of complex conjugate poles -ai -4-

jwi. For first-order poles, the E matrix has negative real numbers on the

diagonal. With the E matrix chosen in the block-diagonal form, the Lyapunov

equation (3.9) can be split into independent partitions as

Ai tl tl fl

A2 t2 - t2 A + f2 C = 0 (3.17)

"'. " i i
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or,

Aiti - tiA + f_C = 0, / = 1, 2, ... (3.18)

where ti and fi are the i-th partitions of T and F corresponding to the /-th

block of E. The optimization parameters in Eq. (3.18) are ai, w_, and the

elements of fi. If it is necessary to characterize damping directly, the damping

factor _ = ai/wi can replace al as one of the optimization parameters.

A block-by-block optimization procedure is established based on Eq. (3.17).

For the/-th partition, the optimization problem is described as:

Minimize 7(¢'_,w,,f_)= [[ K- KT_Ti 112
[[ K [12

T__I ] with the solution ofwhere Ti = ti
t_ being

J

tiA = hiti + fiC

and subject to

¢i.,.. < 4i <¢im.., wi.,.. < < wi,...

(3.19)

Starting out with To = [0], the observer system matrices E and F are optimized

block by block with the objective of obtaining a T matrix that is close to K.

Although block-by-block optimization does not yield a global minimum, it has

fewer optimization parameters and the computation cost is more economic than

a global optimization approach. A general criterion for choosing the bounds

for ¢'i and wi is to place the observer poles such that the observation process is

fast enough to provide estimated states for feedback.
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Based upon the above derivation, a semi-inverse observer-based control

design procedure can be summarized by the following steps:

(1) Determine a state feedback gain matrix K. Set i = 1, and T = [0].

(2) Set the bounds for ¢i and wi. Solve the optimization problem (3.19) for

ti, Ai, and fi.

(3) Expand the T matrix by adding in tl. Check the stability of A + BGT

(G = KT +).

(4) Determine if the closed-loop system is stable with acceptable perfor-

mance. If yes, stop; else set i = i + 1, and go to Step (2).

The above control design procedure is called a semi-inverse procedure because

the final control law is not designed before the observer, but is a result obtained

from the observer design. The observer design, however, is not completely

independent of the control design, because it tries to yield a control law that

is close to a given design. The dimension of the observer does not have to be

specified in advance. Hence, the proposed method offers considerable flexibility

for the design of a linear state feedback control law and its associated linear

state function observer. As the T matrix expands in Step (3), the order of the

observer grows. If, at certain point the stability property and the performance

of the closed-loop system is satisfactory, the design procedure can stop there.

The observer that is obtained has a dimension that is the same as the number

of row vectors in the T matrix.

The optimization problem, Eq. (3.19), can be solved numerically by using

available efficient optimization schemes. For the example to be demonstrated
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later in this paper, a Newton-Raphsonmethod with a one-dimensional search

scheme was used. The most time-consuming computation in the optimization

process is solving the Lyapunov equation, Eq. (3.18). The general approach

to solve the Lyapunov equation is to first transform the A and Ai matrices

into a simple form, e.g., the upper quasi-triangular form[l], and then to solve

the transformed equation. Although the Lyapunov equation is to be solved

repeatedly during the optimization process, the transformation of the A matrix

needs to be done only once.

The stability of the control design obtained from the semi-inverse design

procedure is determined by the location of the regulator poles, which are the

eigenvalues of A + BGT. For the original design with the feedback gain matrix

K, the regulator poles are the eigenvalues of A + BK. Since GT approximates

K, the eigenvalues of A+BGT can be considered as perturbations of eigenvalues

of A + BK. Use the following expression:

a + BGT = a + BK + B(GT- K) = (a + BK) + BAK (3.20)

where

AK = GT- K (3.21)

is the difference between the new feedback gain matrix and the original gain

matrix, which is minimized in the optimization process. If the original design

A + BK satisfies stability and performance requirements, the new design will

likely be stable if the perturbation term BAK is small. In fact, eigenvalue

sensitivity of a matrix due to perturbation is governed by the condition number

of the matrix form by the eigenvectors[4]. If the conditioning is bad, even

small perturbation can lead to significant changes of eigenvalues. Therefore, it
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is recommendedthat someexisting robust eigensystemassignmentalgorithm,

e.g.,the method of Kautsky et al.[9], be usedto designthe state feedbackgain

matrix K, such that the eigenvalues of A + BK will be insensitive to the system

uncertainties and/or perturbations.

3.3 Numerical Examples

3.3.1 A Four Disk System

The first example is a four disk system whose system matrices are listed

in Table 3.1. They represent a linear, time-invariant, SISO, unstable and non-

Table 3.1: Data matrices od a four disk system.

A

-0.1610 1 0 0 0 0 0 0

-6.0040 0 1 0 0 0 0 0

-0.5822 0 0 1 0 0 0 0

-9.9835 0 0 0 1 0 0 0

-0.4073 0 0 0 0 1 0 0

-3.9820 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

BT= [0, 0, .0064, .00235, .0713, 1.0002,. 1045, .9955]

C=[1 0000000]

Q = (1.0 x 10-6)HrH;

H = [0 0 0 0 0.55 11 1.32 18.0]

R=I

minimum phase system of order eight. This example has been used to compare

different controller reduction methods[13, 25]. It will be used here to demon-
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strate the feasibility and efficacy of the proposed method.

The original feedback gain matrix K was determined by using the LQR

control design method. Then, three observer designs were obtained by using the

semi-inverse control design procedure. The results are summarized in Table 3.2,

and Figs. 3.1 through 3.3. The parameter bounds were set to be w > 0.01 and

Table 3.2: Three observer designs.

Design Order Poles 7 C ostt

1 2 -.1099 4- j.0275 .0220 .1708

2 3 -.1099 4- j.0275, .0180 .1608

-0.9

3 4 -.1099 :t: j.0275, .0133 .1605

-.3554 + j.0888

t With exact state feedback, the minimum cost is 0.1591.

_> 2, which means that the observer is an overdamped system. Design 1 is a

second-order linear state function observer, which is the result of optimization

for the first block of the E matrix. The values of "7 and the performance cost

indicate that the control law of Design 1 is very close to that of the optimal

design. The original gain matrix and the gain matrix obtained from the semi-

inverse design procedure are

K -- [0.0001 0.0013 0.0002 0.0010 - 0.0009

GT = [0.0000 0.0000 0.0000 -0.0001 0.0005

- 0.0032 0.0060 0.1046]

- 0.0027 0.0060 0.1046]

It is seen that the new gain matrix GT picks up all the largest gain elements

in the K matrix. The performance cost of the second-order observer is also
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very close to the minimum performance cost, 0.1591, which is calculated by

assuming that all of the system states are measurable for feedback.

Design 2 is a third-order linear state function observer, which is obtained

by augmenting Design 1 by a first-order pole. Design 3 is a fourth-order linear

state function observer with two pairs of complex conjugate poles. All three

designs are stable with satisfactory performance. The control law of Design 3

is nearly optimal. Table 3.3 compares the eigenvalues of A + BGT of Design 3

Table 3.3: Comparison of eigenvalues.

A + BGT A + BK

-0.0369 4- jl.8495

-0.0284 4- jl.4100

-0.0167 4- j0.7656

-0.0493 4- j0.0275

-0.0370 4- jl.8496

-0.0283 4- jl.4097

-0.0167 4- j0.7652

-0.0492 4- j0.0371

and the eigenvalues of A + BK. The condition number of the modal matrix of

A + BK is 119.6, which is not considered to be very small. However, the norm

of the perturbation term [[BAK[[2 = 0.002 is much smaller than the norm of

the original closed-loop matrix [[A + BK[[2 = 12.4. This explains why the

perturbations of the regulator poles are small.

Response comparisons are shown in Figs. 3.1 through 3.3. The initial

states are arbitrarily set to bex0 = [1 1 1 1 1 1 1 1 ]. Again, the fourth-

order observer tracks the optimal regulation trajectory almost exactly. This

example shows that if the optimization can yield a T matrix very close to the

original feedback gain matrix, then the control law derived from the linear state
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function observer is also close to the prescribed control law.
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Figure 3.1: Response comparison: Design 1 vs exact state feedback.
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Figure 3.2: Response comparison: Design 2 vs exact state feedback.
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Figure 3.3: Response comparison: Design 3 vs exact state feedback.
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3.3.2 A Lightly-Damped Beam

The second example is a simply-supported lightly-damped beam taken

from [28]. Table 3.4 shows the data matrices of this system. Two optimal

Table 3.4: Data matrices of a lightly damped beam.

([0 1])A = block diag -w_ --2(wi ' i = 1, ..., 5

B T= [0, .9877, 0, -.0309, 0, -.8910, 0, -.5878, 0, .7071]

C = [.9877, 0, .3090, 0, -.8910, 0, -.5878, 0, .7071,0]

Q = crc;

R = 100, 0.1

feedback gain matrices are determined by using the LQR control design method

with control weighting R = 100 and R = 0.1 respectively. The parameter

bounds for optimization are set to be 10 > _ > 0.1 and w > 0.1.
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For the casewith low-gaincontrol (R = 100),the results are summarized

in Fig. 3.4 and Table 3.5. It is seen that as the order of the observer increases,

Table 3.5: Optimization results (R = 100).

Order Block Poles 3' Cost t

2 A1 -0.0875 4- j0.8748 0.1727 14.7234

4 As -0.2483 4- j2.4831 0.1248 13.7059

6 A3 -0.6332 + j2.1718 0.0035 13.1212

t With exact state feedback, the minimum cost is 13.1200.

the value of 3' decreases and the controller performance approaches the optimal

one. In fact, the second-order linear state function observer is already a good

approximation of the optimal design. The results for the case with high-gain

control (R = 0.1) are summarized in Table 3.6 and Figs. 3.5 and 3.6. The

Table 3.6: Optimization results (R = 0.1).

Order Block Poles 7 Cost t

2 A1 -1.9582 4- j0'1958 0.4236 unstable

4 A2 -0.2023 4- j2.0233 0.1397 3.0000

6 A3 -0.5477 4- j5.4773 0.1036 2.4981

8 A4 -1.2263 4- jl0.000, 0.0747 2.5114

t With exact state feedback, the minimum cost is 2.1673.

second-order linear state function observer did not yield a stable design. The

fourth- and sixth-order linear state function observers, however, yield stable



49

designswith satisfactory performance. Note that in Table 3.6 although the

3' value of the eighth-order observer is smaller than that of the sixth-order

observer,the cost value of the eighth-order observer is higher than that of

the sixth-order observer. This result comesfrom the fact that optimization

processminimizes 3,insteadof the cost function. According to the definition

of closeness,Eq. (3.13), it is still fair to say that the eighth-order observer

is closerto the given control law than is the sixth-order observer. The cost

valueswere comparedhere simply becausethe given feedbackgain matrix is

an optimal control law. If the original feedbackgain matrix is obtained by

usingsomeeigenvalues/eigenvectorsassignmentalgorithm, then comparisonof

the cost valuesis not a mandatory criterion.

1.5

0.5

0
-0.5

-1.5

J

2b 30
TIME

Figure 3.4: Response comparison (R = 100): second-order linear state function
observer vs exact state feedback.
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Figure 3.5: Response comparison (R = 0.1): fourth-order linear state function
observer vs exact state feedback.
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Figure 3.6: Response comparison (R = 0.1): sixth-order linear state function
observer vs exact state feedback.



Chapter 4

CONCLUSIONS

A one-sided, unsymmetric block Lanczos algorithm for the model reduc-

tion of damped structural dynamics systems is presented in this report. The

most expensive computation involved in the algorithm is the solution of the

Lyapunov equation. There are several advantages of the proposed method over

the existing Lanczos algorithm. First, the numerical breakdown problem which

usually occurs in the two-sided unsymmetric Lanczos algorithm is not present

in the one-sided algorithm. It is also shown that the Lanczos vectors generated

by the proposed algorithm lie either in the controllable subspace or the ob-

servable subspace, depending on whether the controllability grammian or the

observability grammian is used as the normalization weighting matrix. The

reduced-order model based on the Lanczos vectors is guaranteed to be stable.

For unstable systems, a shifting scheme can be used to ensure the solution of

the Lyapunov equation. It is shown that shifting of the system matrix does not

change the span of the Lanczos vectors. Finally, the flexibility of the choice of

starting vector yields more accurate reduced-order models.

A semi-inverse observer-based control design procedure is also presented

in this report. The method offers significant flexibility for the design of low-

order controllers. Two examples have demonstrated that the semi-inverse

scheme indeed can produce low-order controllers with satisfactory performance.
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The proposed method does not require model reduction or controller reduc-

tion. Therefore, there is no control energy spillover in the closed-loop system.

To yield a very-low-order controller, it is required that the eigenvalues of the

original feedback design be insensitive to closed-loop system parameter per-

turbation. A possible improvement of the proposed procedure would be to

approximate the control gain matrix obtained from a robust pole placement

method instead of from the LQR control theory. The heaviest computation

cost in the optimization process is the solution of the Lyapunov equation. The

selection of the parameter bounds is on a trial and error basis. More study

should be devoted to the selection of good observer poles.
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